The impact of continuously‐variable dose rate VMAT on beam stability, MLC positioning, and overall plan dosimetry
نویسندگان
چکیده
A recent control system update for Elekta linear accelerators includes the ability to deliver volumetric-modulated arc therapy (VMAT) with continuously variable dose rate (CVDR), rather than a number of fixed binned dose rates (BDR). The capacity to select from a larger range of dose rates allows the linac to maintain higher gantry speeds, resulting in faster, smoother deliveries. The purpose of this study is to investigate two components of CVDR delivery - the increase in average dose rate and gantry speed, and a determination of their effects on beam stability, MLC positioning, and overall plan dosimetry. Initially, ten VMAT plans (5 prostate, 5head and neck) were delivered to a Delta4 dosimetric phantom using both the BDR and CVDR systems. The plans were found to be dosimetrically robust using both delivery methods, although CVDR was observed to give higher gamma pass rates at the 2%/2 mm gamma level for prostates (p < 0.01). For the dual arc head-and-neck plans, CVDR delivery resulted in improved pass rates at all gamma levels (2%/2 mm to 4%/4 mm) for individual arc verifications (p < 0.01), but gave similar results to BDR when both arcs were combined. To investigate the impact of increased gantry speed on MLC positioning, a dynamic leaf-tracking tool was developed using the electronic portal imaging device (EPID). Comparing the detected MLC positions to those expected from the plan, CVDR was observed to result in a larger mean error compared to BDR (0.13 cm and 0.06 cm, respectively, p < 0.01). The EPID images were also used to monitor beam stability during delivery. It was found that the CVDR deliveries had a lower standard deviation of the gun-target (GT) and transverse (AB) profiles (p < 0.01). This study has determined that CVDR may offer a dosimetric advantage for VMAT plans. While the higher gantry speed of CVDR appears to increase deviations in MLC positioning, the relative effect on dosimetry is lower than the positive impact of a flatter and more stable beam profile.
منابع مشابه
Investigation of Freedom-Degrees impact on Modulation of Radiation
Introduction: Nowadays tendency to apply more degrees of freedom in high-tech radiotherapy systems, and consequent complex process to optimize dose calculation and delivery algorithms, is a challenge of radiation therapy optimization. Faster MLC speed, dose rate, Gantry angle variation, and other degrees, which have been utilized in IMRT, IMAT, VMAT, improved modulation of inte...
متن کاملBeam modeling and VMAT performance with the Agility 160‐leaf multileaf collimator
The Agility multileaf collimator (Elekta AB, Stockholm, Sweden) has 160 leaves of projected width 0.5 cm at the isocenter, with maximum leaf speed 3.5 cms-1. These characteristics promise to facilitate fast and accurate delivery of radiotherapy, particularly volumetric-modulated arc therapy (VMAT). The aim of this study is therefore to create a beam model for the Pinnacle3 treatment planning sy...
متن کاملEvaluation of a fast method of EPID-based dosimetry for IMRT and Comparison with 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT
Introduction: Electronic portal imaging devices (EPIDs) could potentially be useful for intensity-modulated radiation therapy (IMRT) and VMAT QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in ...
متن کاملConstant Dose Rate Vmat in Raystation
When optimizing variable dose rate VMAT (VDR) beams, the leaf positions and the MU of each control point are optimized simultaneously (Figure 1). Since the MU is not allowed to be individually optimized for each control point for a constant dose rate VMAT (CDR) beam (Figure 2), it is likely that the plan quality is reduced compared to a VDR beam with the same angle settings. To obtain a good qu...
متن کاملThe impact of a high‐definition multileaf collimator for spine SBRT
PURPOSE Advanced radiotherapy delivery systems designed for high-dose, high-precision treatments often come equipped with high-definition multi-leaf collimators (HD-MLC) aimed at more finely shaping radiation dose to the target. In this work, we study the effect of a high definition MLC on spine stereotactic body radiation therapy (SBRT) treatment plan quality and plan deliverability. METHODS...
متن کامل